局部图像检测器通过图像比较按其增量不变性属性可进行分类。他们都是平移不变的。Harris角点检测是旋转不变的。这Harris–Laplace(拉普斯),Hessian(海赛函数)-Laplace和DOG(Difference–of-Gaussian(高斯函数))区域检测器是旋转不变和尺度不变的。一些基于力矩区域检测器,包括Harris -Affine(仿射)Hess ian-Affine区域检测器,一个边缘检测点,一个熵检测,两个水平线检测的MSER (“最稳定极值地区”)和LLD (“水平线描述符”)的设计是仿射不变的转变。MSER,特别说明,已被证实通常比其他仿射不变检测效果更好,紧随其后的是海赛-仿射和哈里斯-仿射。这些方法通过修补局部斑块,区域,或相当经历了一个未知的仿射变换。归一化变换后他们得到一个标准的对象,仿射变换的影响已经消除。然而,当一个较大比例变换出现时 (事实上比3大),SIFT仍优于所有的其他方法。事实上,实践证明数学上的,SIFT是完全尺度不变的,指出没有完全尺度的归一化方法或仿射不变性:“然而,这些方法是尚未完全仿射不变量,当他们开始与初始特征尺度和地点选择用一种无仿射变换方式时,却由于开发全仿射空间成本过高。
算法概述:
对图像进行旋转变换和倾斜变换可以模拟有限的一些不同水平角度,垂直角度拍摄图像。对这些参数进行采样能保证模拟图像在不同的角度引起的视角变换下保持近似。所有模拟倾斜后的图像将由 SIFT 算法进行匹配比较。
水平和垂直采样:
采样范围:
采样步骤:
MATLAB仿真实验
自由女神像测试图仿真
书本测试图仿真
LEAN像测试图仿真
对比多种算法:
参考文献汇总:
[1] 附件下载:2013030836711421.rar
[2] 附件下载:2013030836737485.rar
[3] C. Harris and M. Stephens. A combined corner and edge detector.Alvey
Vision Conference, 15:50, 1988.
[4] T. Kadir, A. Zisserman, and M. Brady. An Affine InvariantSalient
Region Detector. ECCV, 228–241, 2004.
[5] T. Lindeberg and J. Garding. Shape-adapted smoothing in estimation of
3-d depth cues from affine distortions of local 2-d brightness structure. ECCV,
389–400, 1994.
[6] D.G Lowe. Distinctive image features from scale-invariant key points.
IJCV, 60(2):91–110, 2004.
[7] J. Matas, O. Chum, M. Urban, and T. Pajdla. Robust widebaseline stereo
from maximally stable extremal regions. Image and Vision Computing,
22(10):761–767, 2004.
[8] K. Mikolajczyk and C. Schmid. Indexing based on scale invariant
interest points. Proc. ICCV, 1:525–531, 2001.
[9] K. Mikolajczyk and C. Schmid. An affine invariant interest point
detector. Proc. ECCV, 1:128–142, 2002.
[10] K. Mikolajczyk and C. Schmid. Scale and Affine Invariant Interest
Point Detectors. IJCV, 60(1):63–86, 2004.
[11] K. Mikolajczyk and C. Schmid. A Performance Evaluation of Local
Descriptors. IEEE Trans. PAMI, 1615–1630, 2005.
[12] K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman, J. Matas, F.
Schaffalitzky, T. Kadir, and L.V. Gool. A Comparison of Affine Region
Detectors. IJCV, 65(1):43–72, 2005.
[13] J.M. Morel and G. Yu. ASIFT: A New Framework for Fully Affine
Invariant Image Comparison. to appear in SIAM Journal on Imaging Sciences,
2009.
[14] J.M. Morel and G. Yu. On the consistency of the SIFT method. to
appear in Inverse Problems and Imaging (IPI), 2008.
[15] P. Mus′e, F. Sur, F. Cao, Y. Gousseau, and J.M. Morel. An A Contrario
Decision Method for Shape Element Recognition. IJCV, 69(3):295–315, 2006.
[16] D. Pritchard andW. Heidrich. Cloth Motion Capture. Computer Graphics
Forum, 22(3):263–271, 2003.
[17] T. Tuytelaars and L. Van Gool. Matching Widely Separated Views Based
on Affine Invariant Regions. IJCV, 59(1):61–85, 2004.
------------------------------------------------------------------------------------- 专业,代做,代写,承接,MATLAB,SIMULINK,FPGA项目,博士,硕士,本科,毕业设计,课题设计,论文, 期刊,毕业论文,杂志,Coursework,Eassy,Assignment,ISE,QuartusII,Vivado,PlanAhead, SystemGenerator,Verilog,VHDL,VRML,DSPBuilder,EDK,SDK,MaxplusII,PowerPC,Microblaze 专业代做/代写/承接、MATLAB、SIMULINK、FPGA项目、博士/硕士/本科毕业设计、课题设计、 论文,毕业论文,Coursework、Eassy、Assignment QQ:122 4848 052